Fare matematica nella scuola di tutti
Relazioni in Plenaria
– La geometria pratico-intuitiva nella storia dell’insegnamento, Marta Menghini
– Promuovere e valutare le competenze matematiche a scuola, Michele Pellerey
– Progetto Obiettivo 500. “Didattica per Competenza”: Problem Solving mediante la narrazione matematica”, Giovannina Albano, Giuseppina Rita Mangione, Anna Pierri, Leke Pepkolaj
– “Sia benedetto questo errore!”: la “pericolosa intuizione del caso limite” da Guido a Emma Castelnuovo, Claudio Fontanari
– Aspetti rivoluzionari dell’insegnamento di Emma Castelnuovo, Mario Barra
– Aspetti rivoluzionari dell’insegnamento di Emma Castelnuovo, Mario Barra (file .ppsx)
– Emma Castelnuovo, i “suoi amici” e i “nostri maestri”: incontri con spiriti liberi, Nicoletta Lanciano
– Emma Castelnuovo: la bellezza e il paicere del pensare con rigore e libertà, Franco Lorenzoni
– L’esperienza dei ‘maestri di strada”:
Cesare Moreno
Stefania Notaro
– Le “Klein vignettes”: un progetto per gli insegnanti di matematica, Ferdinando Arzarello
– La matematica nella vita, Roberto Natalini
– La ricerca in didattica della matematica e la sua applicazione concreta in aula, Bruno D’Amore
Tavole Rotonde
“Dall’officina matematica di Emma Castelnuovo alle nuove tecnologie”
coordina: Ornella Robutti (CIIM)
Maria Alessandra Mariotti (Università), Ketty Savioli (scuola primaria), Rossella Garuti (scuola secondaria di I grado), Luigi Tomasi (scuola secondaria di II grado)
“Matematica e scienze a scuola: un connubio con gioie e dolori”
coordina: Roberto Tortora (CIIM)
Paolo Guidoni (Università), Colomba Punzo (scuola primaria), Lucia Stelli (scuola secondaria di I grado), Donata Foà (scuola secondaria di II grado)
Laboratori Attivati
1° ciclo
- – L’Officina Matematica di Emma Castelnuovo: dalla costruzione di figure alla scoperta di proprietà (C.Degli Esposti, P.Gori)
– Il senso del numero tra discreto e continuo: le stragegie di bambini di prima elementare alle prese con mucchi di riso (M.Mellone, M.Esposito)
– Poligoni al cinema: un cortometraggio come introduzione ad un laboratorio didattico (E.Ughi)
– Spiega che cosa, come e perché: percorsi di avvio all’argomentazione e dimostrazione nella scuola secondaria di primo grado (F.Morselli)
– L’Officina Matematica di Emma Castelnuovo: operare negli insiemi numerici finiti e infiniti (C.Degli Esposti, P.Gori)
– Laboratorio con le macchine matematiche (F.Martignone, C.Coppola, L.Lombardi, T.Pacelli) – Scheda pascalina
– Didattica della matematica e disturbi specifici dell’apprendimento: da quadri teorici di riferimento a pratiche efficaci per fare matematica nella scuola di tutti (A.Baccaglini Frank, E.Robotti)
– Lavori con gli spazi, negli spazi (N.Lanciano) laboratorio all’aperto
– Angoli, fasi della luna e ombre dipinte sui volti (F.Lorenzoni) laboratorio all’aperto
– Tra regolarità e variabili nella scuola primaria (F.Ferrara, K.Savioli)
– Conti e riconti: percorso storico interattivo su come contavano gli antichi popoli (D.Petrone)
– Il problem solving in classe: che problema! Riflessioni sul primo ciclo (P. Di Martino)
2° ciclo
– Rimettiamoci alla prova! Le dimostrazioni per conoscere e capire la matematica (M.Aiello)
1.Il gioco MU
2.Maiuscole e minuscole
3.Un semplice esempio di sistema assiomatico formale
– Da Giulio Cesare al Datagate: esplorare la matematica attraverso la crittografia (O.Rizzo)
– Matematica per la città: rapporti vincenti (M.Coppola, N.Di Maria, B.Festeggato, T.Gianni, P.Lattaro)
– Costruire esempi e controesempi (S.Antonini)
– Problemi di quadratura prima del calcolo (V.Gavagna)
– Congetturare e dimostrare in un ambiente di geometria dinamica (M.A.Mariotti, M.Maracci)
– Indicazioni nazionali: una proposta di percorso (E.Castagnola, L.Tomasi)
1. una proposta primo biennio
2. una proposta secondo biennio
1° e 2° ciclo
– Probabilità bella e possibile (M.Barra)
– L’insegnamento della geometria secondo Emma Castelnuovo (M.Barra)
– Difficoltà in matematica: osservare e interpretare (R.Zan)