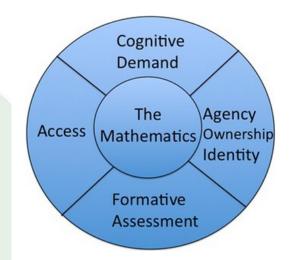


Chiara Surace, Paolo Comaschi, Alessandra Boscolo

Comunità di ricerca

La riflessione sulla pratica, coadiuvata dalla condivisione di idee e strumenti dalla ricerca

La coprogettazione in sottogruppi di lavoro



- Pensiero algebrico
- Interdisciplinarità
- Early Calculus

Una traiettoria di obiettivi

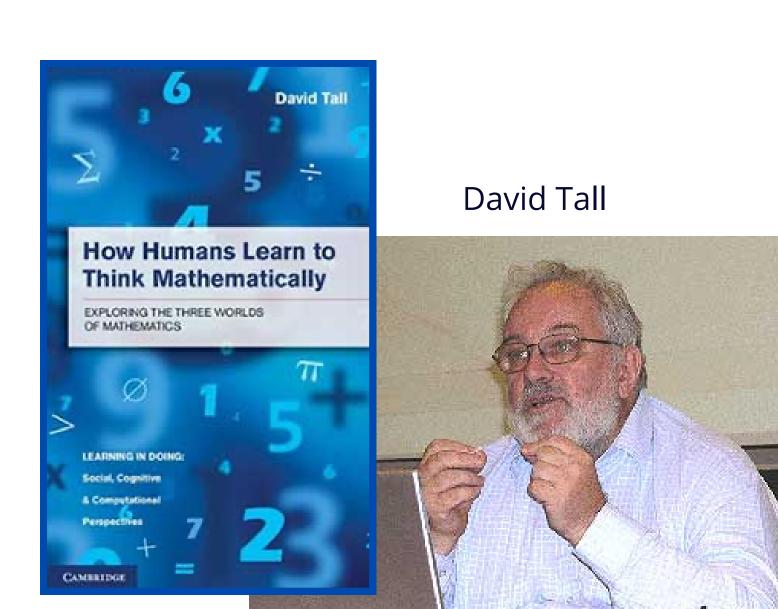
Repository di attività

1. Senso del numero
2. Serie storiche e introduzione al concetto di funzione
3. Introduzione al pensiero variazionale
4. Funzione come macchina input-output
5. Funzioni quadratiche
6. Problemi di massimo e minimo
7. Funzione di proporzionalità inversa e relativi modelli.
8. Funzione valore assoluto
9. Funzione radice quadrata
10. Derivata
11. Primitiva
12. Funzioni polinomiali
13. approssimazione locale di una funzione
14. Funzioni razionali fratte: dominio e segno.
15. Esponenziale e logaritmo
16. Funzioni circolari e modelli che utilizzano funzioni armoniche.
17. Funzioni composte
18. Algebra delle derivate.
19. Teorema fondamentale del calcolo (à la Tall)

Domingo Paola

Early Calculus

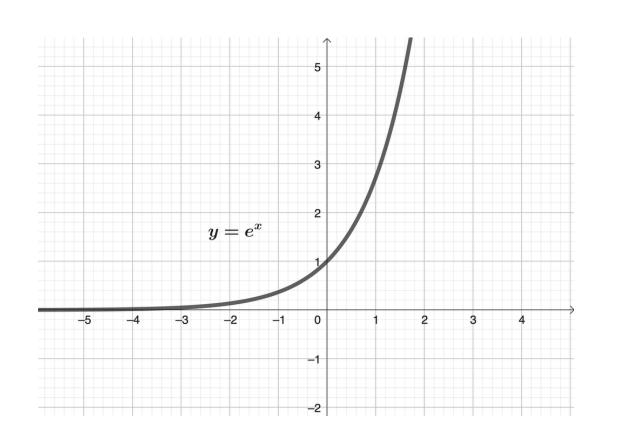
Un progetto didattico relativo all'introduzione delle funzioni e dell'analisi matematica.

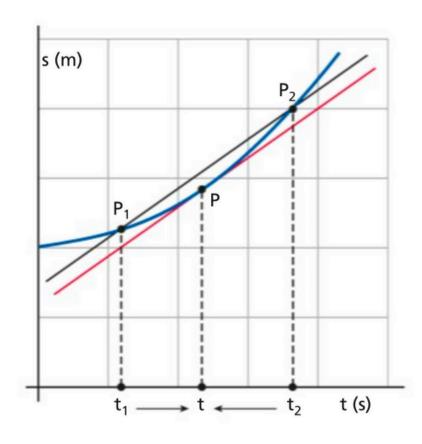


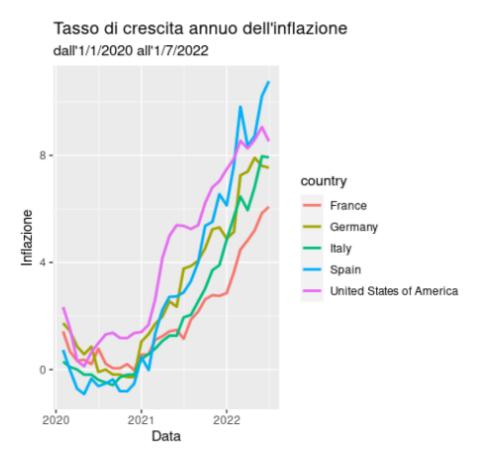
In che senso Early?

Si va a lavorare su elementi di pre-analisi fin dai primi anni delle scuola sencondaria di secondo grado.

Le idee fondamentali di derivate e integrali sono introdotte in modo non formale.



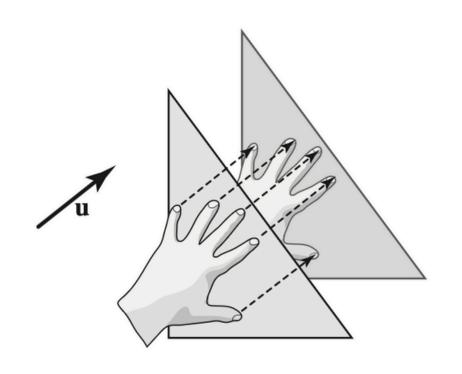


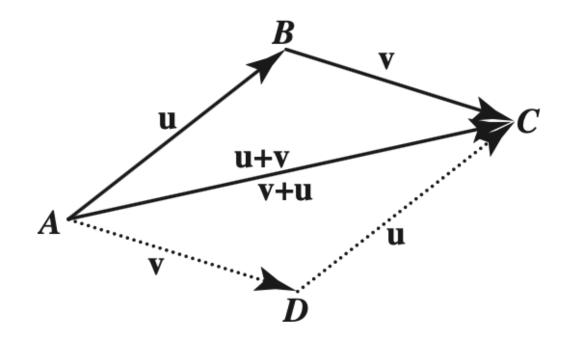


È importante sviluppare queste competenze in modo graduale appena se ne presenta l'occasione.

Le radici cognitive

Brevi esperienze, immagini o azioni che rendono "pensabile" un nuovo concetto anche nell'ambito della sua manipolazione simbolica e formalizzazione assiomatica.





- Additive axioms. For every x,y,z in X, we have
 - \circ x+y = y+x.
 - $\circ (x+y)+z=x+(y+z).$
 - 0 + x = x + 0 = x.
 - \circ (-x) + x = x + (-x) = 0.
- Multiplicative axioms. For every x in X and real numbers c,d, we have
 - $\circ 0x = 0$
 - \circ 1x = x
 - $\circ (cd)x = c(dx)$
- Distributive axioms. For every x,y in X and real numbers c,d, we have
 - $\circ c(x+y) = cx + cy.$
 - \circ (c+d)x = cx +dx.

radici cognitive

operazioni simboliche

formalizzazione assiomatica

Apprendimento come metafora Set-before e Met-before

Set-before - capacità con cui nasciamo su cui si fonda il pensiero matematico: riconoscimento di caratteristiche, ripetizione di azioni e linguaggio.

Met-before - strutture mentali dovute a esperienze passate che influenzano il modo in cui interpretiamo nuove situazioni matematiche. Possono essere di supporto o problematiche.

Sottrarre diminuisce una quantità

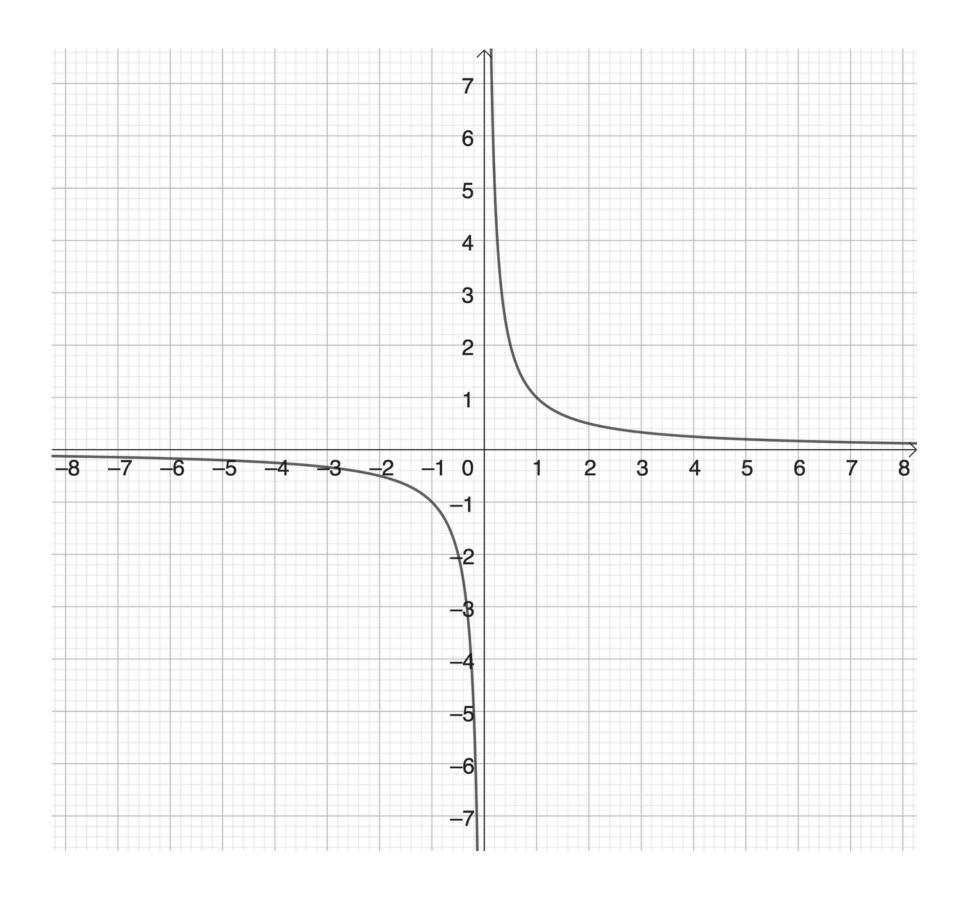
Moltiplicare aumenta il risultato

Un quadrato è sempre positivo

y = 1/x è una funzione continua?

Quali met-before possono essere di supporto alla risposta alla domanda?

Quali possono essere di ostacolo?



Met-before associati alla continuità

Di supporto

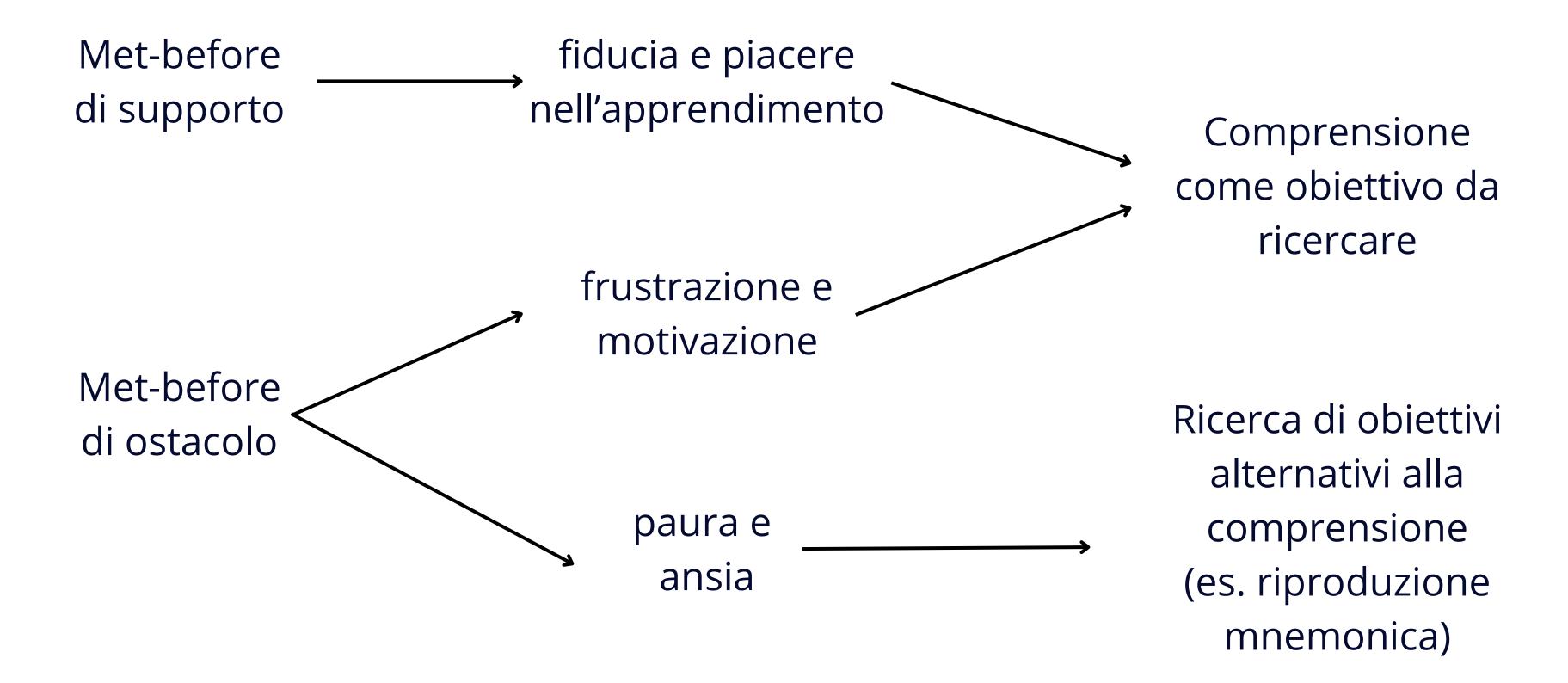
- Una funzione continua manda elementi vicini in elementi vicini;
- nessun salto "al microscopio";
- la continuità dipende dal dominio.

Di ostacolo

- Il grafico si traccia con un tratto unico;
- il grafico è senza salti;
- aspettativa di un grafico liscio;
- associazione asintoto-discontinuità.

Non necessariamente negativi per l'apprendimento, se diventano occasioni di apprendimento.

Met-before e soggettività



OBIETTIVO DEL LABORATORIO: UN PERCORSO DI INTRODUZIONE DELLA DERIVATA

Come: sviluppando un percorso in verticale per introdurre il concetto di derivata in una qualsiasi forma

Punto di partenza: concetto di pendenza media (prerequisiti: funzioni e grafici) Punto di arrivo: competenze su derivata come funzione sia dal punto di vista dell'interpretazione grafica che del calcolo

Quando: appena ci servirebbe o appena si potrebbe introdurre

INIZIAMO!

Cercate le persone che hanno la carta con il vostro stesso matematico: saranno i vostri compagni di gruppo.

Troverete 6 postazioni, ognuna con una diversa attività.

Avrete 40 minuti per visitare con il vostro gruppo tutte le postazioni e visionare il materiale presente in ciascuna di esse.

Avrete poi 20 minuti per pensare ad un percorso che comprenda tutte le attività nell'ordine che ritenete più giusto.

CONFRONTIAMOCI

Raccontateci il vostro percorso.

Vi sembra ci sia tutto?

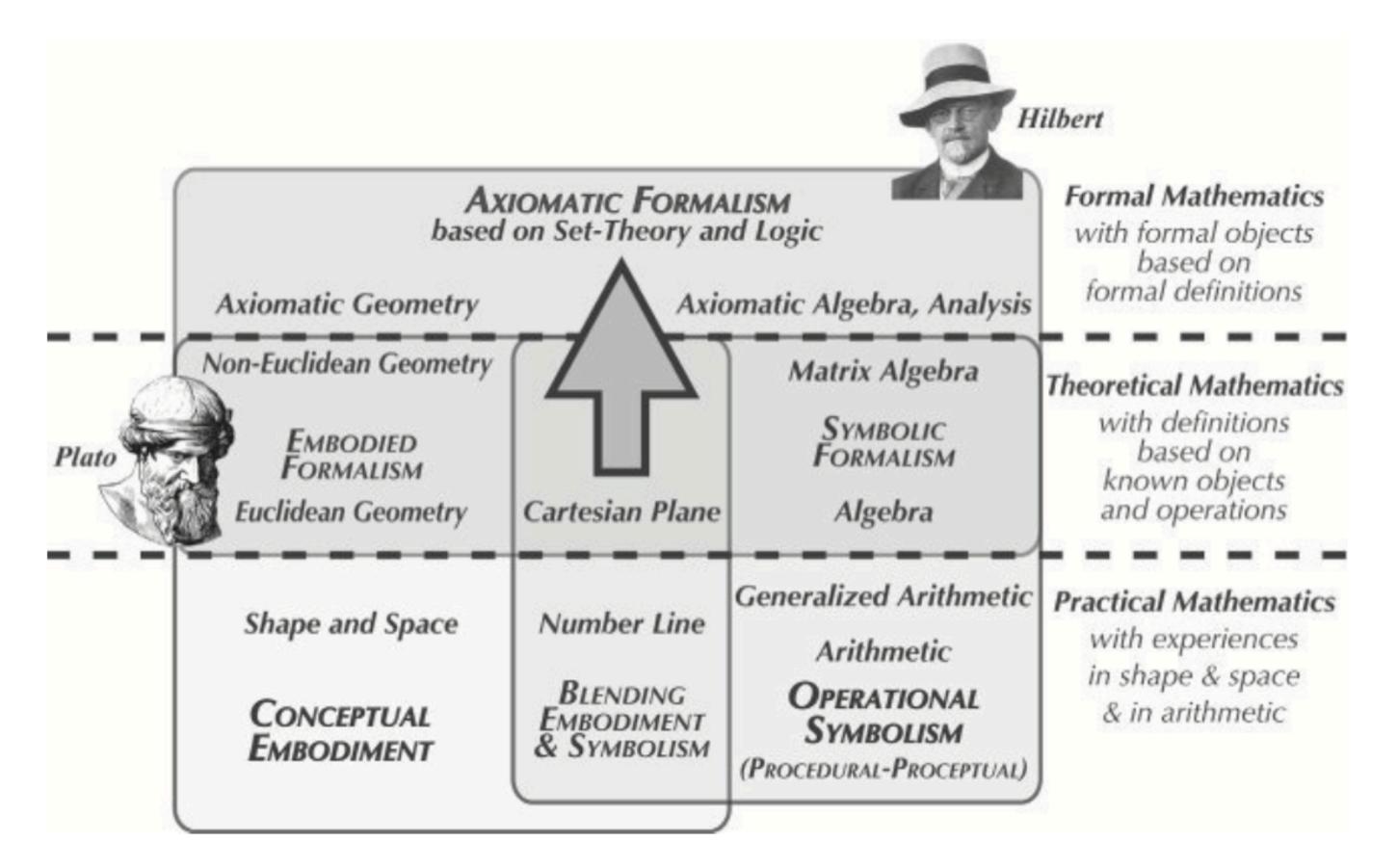
Aggiungereste dei pezzi?

Togliereste qualcosa?

UNA POSSIBILE PROPOSTA

- 1. silent video, la retta tangente e la pendenza locale di una funzione (E)
- 2. silent video, la funzione derivata e le proprietà del grafico di una funzione (A)
- 3. schema di lavoro per un'attività sulla derivata come funzione (B)
- 4. calcolo algebrico della derivata di un polinomio a partire dalla variazione istantanea (D)
- 5. calcolo delle derivate senza ricorrere al limite del rapporto incrementale (C)
- 6. definizione formale della derivata di una funzione (F)

I tre mondi della matematica



Come introdurre il teorema fondamentale del calcolo?

$$\int_a^b f'(t) dt = f(b) - f(a)$$

MATEMATICA

DEFINIZIONE DI FUNZIONE

Dati due sottoinsiemi A e B (non vuoti) di ¾, una funzione f(x) da A a B è una relazione che associa ad ogni numero reale del sottoinsieme A uno e un solo numero reale del sottoinsieme B.

DOMINI

Il dominio di una funzione è l'insieme dei valori reali che si possono assegnare alla x affinché esista il corrispondente valore reale y.

ZERI DI LINA FLINZIONE

Un numero reale "a" è uno **zero della funzione** y=f(x) se accade che f(a)=0 Gli zeri di una funzione sono i punti in cui la funzione si interseca con l'asse x (punti di intersezione con l'asse x)

FUNZIONE PARI

Una funzione f(x) è pari se f(-x)=f(x) $\forall x\in\Re$, in tal caso il grafico della funzione è simmetrico rispetto all'asse y.

FUNZIONE DISPARI

Una funzione f(x) è dispari se f(x)=-f(x) $\forall x \in \mathfrak{R}$, il suo grafico, invece, è simmetrico rispetto all'origine degli assi.

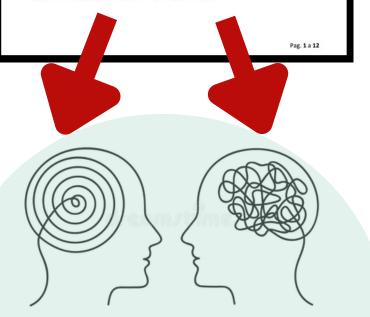
Esempio di funzione dispari: $y = \frac{1}{2x}$ $f(-x) = \frac{1}{2(-x)} = -\frac{1}{2x} = -f(x)$

PROPRIETÀ DELLE FUNZIONI

Una funzione è **iniettiva** se ad elementi distinti del dominio corrispondono immagini distinte (y): cioè se $x_1 \neq x_2$ implica che $f(x_1) \neq f(x_2)$ RETTA

Una funzione è **suriettiva** se ogni elemento di B è immagine di almeno un elemento di A. PARABOLA

Una funzione è biiettiva se è sia iniettiva sia suriettiva



"Al maestro sembra ancora che il bambino per imparare, debba seguire quel filo dritto che si è tracciato come educatore"

Psicogeometria (Montessori, 1934)

Perchè risponde all'imperativo della significatività (dal punto di vista dello studente) dell'apprendimento

«Chi in educazione è riuscito a suscitare un interesse che porta a scegliere un'azione e a eseguirla con tutte le forze, con entusiasmo fattivo, ha svegliato l'uomo»

Piscogeometria (Montessori, 1934)

Deve emergere nella situazione problema la **necessità** di introdurre il significato o la pratica matematico in gioco.

- Come io (studente), facendo quello che mi stai proponendo, posso esperire comprendere il contenuto matematico proposto?
- È una mia esigenza, facendo l'attività, riferirmi a quello strumento / contenuto matematico?

TRU (Schoenfeld, 2016)

Promuovere una comprensione relazionale (Skemp, 1976)

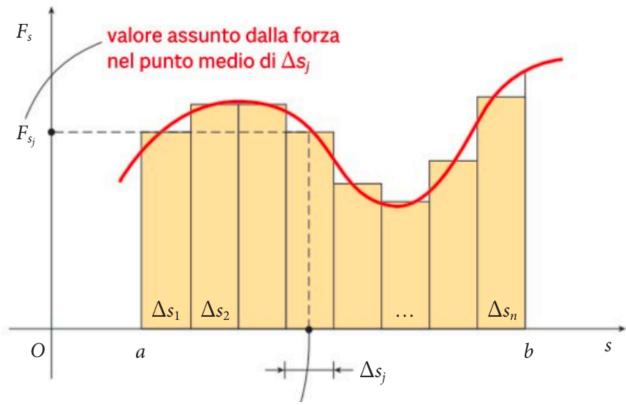
Utilizzare concetti che hanno una formalizzazione ostica senza basi solide può incoraggiare un'apprendimento strumentale (Skemp, 1976), portando gli studenti a rifugiarsi in regole e procedure di cui non si è ben compreso il significato (es. la verifica del limite)

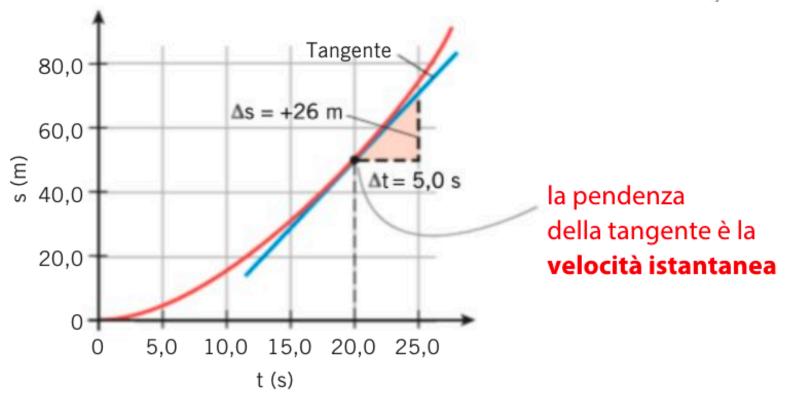
È un pre-requisito necessario per comprendere pienamente argomenti considerati meno avanzati

Molti concetti si comprendono più chiaramente avendo una comprensione basilare dell'analisi, ad esempio:

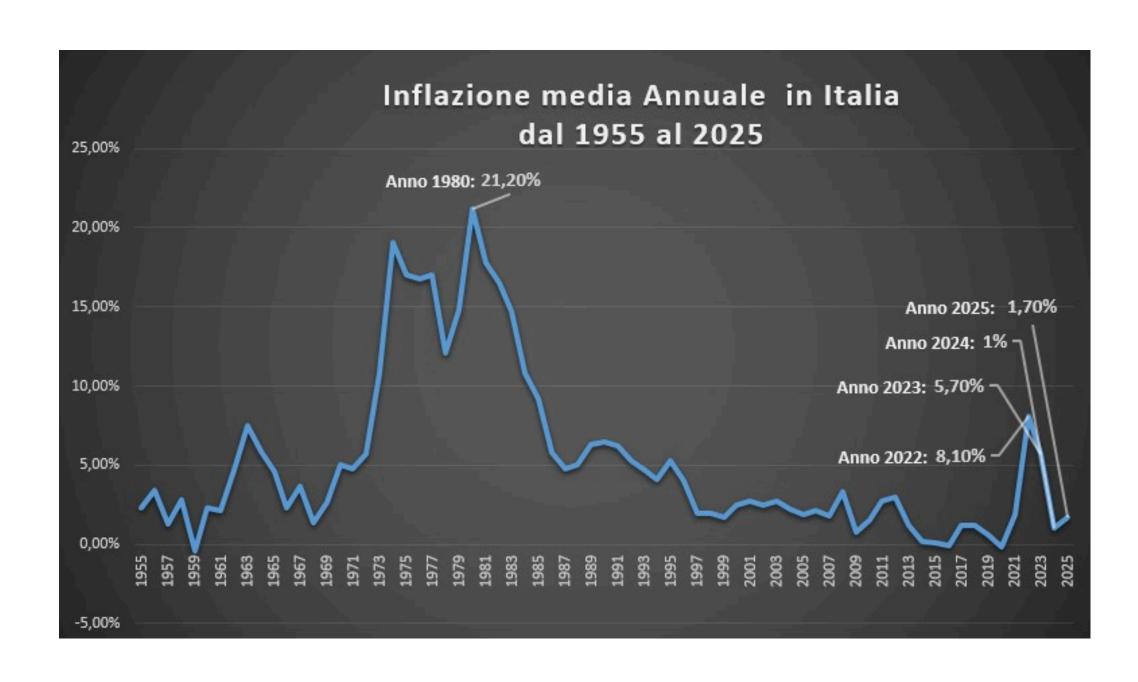
- l'importanza del numero di Eulero
- gli asintoti obliqui
- le peculiarità di esponenziali, logaritmi e funzioni goniometriche
- problemi di massimo e minimo
- approssimazione di funzioni

Lo facciamo già maldestramente in fisica





Derivate e integrali sono intorno a noi



Bibliografia

- Bagossi, S., Beltramino, S., Ferretti, F., Giberti, C. & Taranto, E. (2023). *Varia tu che covario anch'io: Riflessioni e progettazioni sul ragionamento covariazionale*. Ledizioni.
- Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. Basic Books.
- Montessori, M. (2011). Maria Montessori Psicogeometria, Dattiloscrittoinedito a cura di Benedetto Scoppola. [Maria Montessori Psychogeometry]. Edizioni Opera Nazionale Montessori.
- Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics teaching, 77(1), 20-26.
- Tall, D. (2013). How humans learn to think mathematically: Exploring the three worlds of mathematics. Cambridge University Press.