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Abstract Most national curricula for both primary and

secondary grades encourage the active involvement of

learners through the manipulation of materials (either

concrete models or dynamic instruments). This trend is

rooted in the emphasis given, at the dawn of ICMI, to what

might be called an experimental approach: the links

between mathematics, natural sciences and technology

were in the foreground in the early documents of ICMI and

also in the papers of its first president, Felix Klein. How-

ever, the presence of this perspective in teaching practice is

uneven. In this paper, we shall reconstruct first an outline

of what happened in three different parts of the world

(Europe, USA and Japan) under the direct influence of

Klein. Then, we shall report classroom activities realized in

the same regions in three different research centres: the

Laboratory of Mathematical Machines at the University of

Modena and Reggio Emilia, Italy (http://www.mmlab.

unimore.it); the pedagogical space of Kinematical Model

for Design Digital Library at Cornell, USA (http://kmoddl.

library.cornell.edu/); and the Centre for Research on

International Cooperation in Educational Development at

Tsukuba University, Japan (http://math-info.criced.tsukuba.

ac.jp/). They have maintained the reference to concrete

materials (either models or instruments), with original

interpretations that take advantage of the different cultural

conditions. Although in all cases the reference to history is

deep and systematic, the synergy with mathematical mod-

elling and with information and communication technolo-

gies has been exploited, not to substitute but to complement

the advantages of the direct manipulations.

Keywords Models � Instruments � ICT � ICMI �
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1 Introduction

The relationships in teaching between mathematics and

the concrete materials of the real world have a long

history that does not suit the space of a single paper. We

shall limit ourselves to some classical quotations (Cas-

telnuovo, 2008). Jan Comenius (1592–1670) defended in

Didactica Magna (1657) the relevance of the manipula-

tion of concrete things in every individual experience of

knowledge construction:

‘‘Everything must be presented to the senses as much

as possible; to wit, the visible to the eye, the audible

to the ear, odors to the sense of smell, the tastable to

the taste, and the touchable to the sense of touch; and,

whenever something can be grasped by more than

one sense at one time, let it be presented to them at

one time. One may, however, if the things themselves
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Emilia, Via Campi 213/B, Modena, Italy

e-mail: bartolini@unimore.it;

mariagiuseppina.bartolini@unimore.it

URL: http://www.mmlab.unimore.it

D. Taimina

Department of Mathematics, Cornell University,

Ithaca, NY 14853-4201, USA

e-mail: daina.taimina@cornell.edu; dtaimina@lanet.lv

URL: http://www.math.cornell.edu/*dtaimina/

M. Isoda

Graduate School of Human Comprehensive Science,

University of Tsukuba, 305-8572 Tsukuba, Japan

e-mail: msisoda@human.tsukuba.ac.jp;

msisoda@muc.biglobe.ne.jp; isoda@criced.tsukuba.ac.jp

URL: http://math-info.criced.tsukuba.ac.jp/

123

ZDM Mathematics Education

DOI 10.1007/s11858-009-0220-6

http://www.mmlab.unimore.it
http://www.mmlab.unimore.it
http://kmoddl.library.cornell.edu/
http://kmoddl.library.cornell.edu/
http://math-info.criced.tsukuba.ac.jp/
http://math-info.criced.tsukuba.ac.jp/


cannot be presented, use representations of them,

such as models and pictures. […] It is a mistake to let

rules in an abstract form go before, and afterwards

explain them in examples. For the light must go

before him for whom it is intended to shine. […]

Whatever is to be done, must be learned by doing it.

Mechanics do not detain their apprentices for a long

time with meditations: they put them to work at once,

that they may learn to forge by forging, to carve by

carving, to paint by painting, etc. So the pupils should

also learn at school to write by writing, to speak by

speaking, to count by counting, etc. Then the schools

are workshops filled with the sound of work’’

(Comenius, 1657).

These general methodological rules were, at the time of

Comenius, largely ahead of the teaching practice, as (at

least in Europe) there were no public educational institu-

tions for everybody. One century later in France, another

voice was raised, with explicit reference to the teaching of

geometry linked with ‘reality’ (whatever that means).

Alexis Clairaut (1713–1765) discussed the issue as follows:

‘‘Some authors put after each basic statement (of

geometry) its practical use: yet in this way they

establish the usefulness of geometry, without making

geometry learning easier. Because if any statement is

before its use, the mind can come at sensible ideas

only after having struggled with abstract ideas’’

(Clairaut, 1741).

He then suggested his method to evade the above

drawbacks:

‘‘I have planned to find all that could have given rise

to geometry; and I have managed to explain its princi-

ples as naturally as possible, like early inventors’’

(Clairaut, 1741). Hence, he claimed that in geometry

teaching it is necessary to start from measuring land (the

Greek etymology of ‘‘geometry’’: measurement of earth

or land).

These educational principles were available, although

neither widely shared nor widely applied, when, for the

first time in Europe, in the first article of the France

National Constitution (1791), the right to a system of

public instruction was stated: ‘‘Public instruction for all

citizens, free of charge in those branches of education

which are indispensable to all men.’’

In the first half of the nineteenth century, a German

educator, Friedrich Froebel (1782–1852), launched a

practice of active methods for children. He designed

open-ended instructional materials called the gifts, with

complementary occupations (Le Blanc, n.d.). These were

for use both in kindergarten and in school, and gave

children hands-on involvement in practical learning

experiences through play. Foundational to the develop-

ment of the gifts was the recognition of the value of

playing with blocks. Through proper use of the gifts, the

child progresses from the material to the abstract: from

the volumetric lessons offered by blocks, through the

two-dimensional planar ones elucidated by play with

parquetry tiles (flat, geometrically patterned wooden

shapes), to deductions of a linear nature drawn from

stick laying and to the use of the point in pin-prick

drawings. Points, in turn, describe a line, and the child

completes the logic by returning from 2D to the 3D

realm of volume through joining small malleable peas

with toothpicks and onto solid three-dimensional work in

clay.

Although Froebel’s work was mainly oriented to young

children, his approach was representative of an atmosphere

shared with contemporaneous mathematicians in Central

Europe. For instance, Gaspard Monge (1746–1818), a

mathematician deeply involved in French revolution, sup-

ported the creation of beautiful models of surfaces.

‘‘Monge is known as the father of differential

geometry and his efforts in the early 1800s to classify

surfaces by the motions of lines, along with his

descriptive geometry for representing three-dimen-

sional surfaces in two-dimensions, led naturally to the

construction of elaborate models made of tightly

stretched strings. One of his students, Theodore

Olivier (1793–1853), built some of the most beautiful

concrete models of mathematical concepts ever

made. He also made some money in the process: the

models were expensive. Olivier sold them to the

emerging technical schools in the United States,

which were attempting to emulate the example of

Monge and the Ecole Polytechnic.’’ (Mueller, 2001).

It is in this atmosphere that one must situate the work of

Felix Klein (1849–1925) and the other European founders

of ICMI.

This paper is divided into two parts organized around

two main issues:

• First part: the influence of Felix Klein at the dawn of

ICMI in different parts of the world (Europe, USA,

Japan).

• Second part: present applications in today’s classrooms

of the above seminal ideas in the same parts of the

world.

The former concerns the historical roots; the latter

concerns the present utilization of concrete models and

dynamic instruments, which are complementing yet neither

contrasting nor excluding the recourse to information and

communication technologies.
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2 First part: concrete models and dynamic instruments

at the dawn of ICMI

2.1 The European roots and the contribution of Felix

Klein

The use of concrete models and dynamic instruments was

common in Europe in the seventeenth and eighteenth

centuries (see for instance, Maclaurin 1720), but it had a

new impulse in the nineteenth century. In particular, the

second half of the nineteenth century was a time when

many new mathematical ideas were born, combining

together previously separated parts of mathematics.

Mathematicians began to build intricate models out of

wood, string and plaster. In Germany, the main advocate

for the use of concrete models and dynamic instruments

was Klein. In many ways, Monge in France and Klein in

Germany set the standards for how mathematics was taught

in Europe, Northern America and the Far East in the

nineteenth and early twentieth centuries (Klein & Riecke,

1904; see also Schubring, 1989). One of the most thorough

approaches in mathematics, to use concrete models and

dynamic instruments in education and research, is the

famous collection of models in Göttingen. This model

collection already had a long history when Felix Klein and

Hermann Amandus Schwarz (1843–1921) took over the

direction of the collection. Especially under the direction of

Klein, the collection was systematically modernized and

organized for the education of students in geometry and

geodesy. The first clear indication of an interest in model

building had appeared in the ‘‘Monthly reports of the Royal

Prussian Academy of Science in Berlin’’ in 1873, where it

was described that Ernst Eduard Kummer (1810–1893)

presented a plaster model of the Steiner surface, which he

had constructed himself. A wide production of models

began in the 1870s, when Felix Klein and Alexander Brill

(1842–1935) founded a laboratory for the construction of

models and instruments at the Munich Technische Ho-

chschule. The production and detailed study of models was

one of the purposes of the problem sessions directed by

Klein and Brill at the Royal Technical University in

Munich. Some of the models, which were really con-

structed only as exercises or examples, showed that these

types of visual aids were not at all superfluous; on the

contrary, they were of great value (Schilling, 1911).

Klein required his students to make models in connec-

tion with their dissertations on algebraic surfaces. Klein,

Brill and their students built a number of the models that

ultimately became a part of the collection marketed by

Brill’s brother Ludwig, the owner of a publishing firm in

Darmstadt. When Ludwig Brill took over the sales of the

models, they were put together in series, each being

accompanied by a mathematical explanation. Other

producers also offered models, devices, and instruments for

mathematics, physics and mechanics. In 1892, under con-

tract of the newly established German Mathematical

Society, Walter von Dyck (1856–1934) assembled a com-

plete catalogue of such products (Fischer, 1986). He was

one of the creators of the Deutsches Museum of Natural

Science and Technology in Munich, and he was also

appointed as the second director of the museum in 1906.

The Deutsches Museum was the first of its kind and its

ideas were soon copied by other science museums around

the world.

The Munich collection was considered so important that

later Klein exhibited the models on the occasion of the

World’s Columbian Exposition 1893 in Chicago. Models

from the collection of L. Brill were later purchased by

many mathematics departments throughout Europe and the

USA (Parshall & Rowe, 1991).

Later, Klein, as the first president of the International

Commission on Mathematical Instruction, also supported

in secondary schools in a very strong way the recourse to

models, instruments and practical work. He reaffirmed the

importance of work with models and instruments also in

his books: Elementary mathematics from an advanced

standpoint (Klein, 1924, 1925), the famous series for sec-

ondary mathematics teachers, to ‘‘put before the teacher, as

well as the maturing student, from the view-point of

modern science, but in a manner as simple, stimulating and

convincing as possible, both the content and the founda-

tions of the topics of instruction, with due regard for the

current methods of teaching (Klein, 1908, preface to the

first edition, published in Klein, 1924, p. III).’’

The influence of the title of this series was large: in

Germany, courses were opened for prospective teachers

with this exact name; the same name is still used in Italian

universities for the epistemological courses in the educa-

tion of prospective mathematics teacher.

Just to give an example of Klein’s approach, we may

quote what he wrote about the practice in calculating with

integers (Klein 1924), after having described in detail the

famous mechanical calculator Brunsviga (see Fig. 1).

‘‘Let us consider for a moment the general signifi-

cance of the fact that there really are such calculating

machines, […]. In the existence of such a machine we

see an outright confirmation that the rules of opera-

tion alone, and not the meaning of the numbers

themselves, are of importance in calculating, for it is

only these that the machine can follow; it is con-

structed to do just that, it could not possibly have an

intuitive appreciation of the meaning of the numbers.

[…] Although it is not historically authenticated, still

I like to assume that when Leibniz invented the cal-

culating machine, he not only followed a useful
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purpose, but that he also wished to exhibit, clearly,

the purely formal character of mathematical

calculation.’’

For this very reason, Klein wished that every teacher of

mathematics should become familiar with calculating

machines, and that it ought to be possible to have it dem-

onstrated in secondary instruction. In this case, Klein

defended the recourse to mechanical instruments as a

means to become familiar with the very abstract distinction

between the syntactic and the semantic aspects in

mathematics.

Several dynamic instruments were discussed also in the

second volume on Geometry (Klein, 1925): for instance, a

polar planimeter (p. 14), a mechanism to perform affine

transformations (p. 75), a linkage to realize a circular

inversion and, hence, to guide a point so that it will

describe a straight line (p. 100). This last instrument,

called, after Charles-Nicolas Peaucellier (1832–1913), the

Peaucellier straight line mechanism, is represented in

Fig. 2.

In the same years, Franz Reuleaux (1829–1905), a

professor of mechanical engineering in Berlin, built a large

collection of 800 mechanical models in Berlin and mar-

keted 350 of them to universities around the world.

Unfortunately, much of these collections were destroyed

during World War II, but some originals and reproductions

of these models can be found in the Deutsche Museum in

Munich, the University of Hannover, Kyoto University,

Moscow’s Bauman Technical School, Karlov University in

Prague and possibly in some other places we do not know

yet. The largest collection of these models is in Cornell

University where there are 220 (from the originally

acquired 266) Reuleaux models (see Fig. 3). We shall

illustrate this point later.

Reuleaux believed that there were scientific principles

behind the invention and the creation of new machines,

what we call ‘‘synthesis’’ today. This belief in the primacy

of scientific principles in the theory and design of machines

became the hallmark of his worldwide reputation, espe-

cially in the subject of machine kinematics (Moon, 2002).

Hence, Reuleaux was a champion of the application of

mathematics. Reuleaux also devoted serious attention to

education and the role of mathematics:

‘‘The forces of nature which advance taught us to

look to for service are mechanical, physical and

chemical; but the prerequisite to their utilization was

a full equipment of mathematics and natural sciences.

This entire apparatus we now apply, so to say, as a

Fig. 1 Brunsviga calculating machine (courtesy of New Beginning

Antique at http://www.newbegin.com)

Fig. 2 Peaucellier straight line mechanism (http://KMODDL.library.

cornell.edu)

Fig. 3 Reauleaux kinematic model display in Sibley Hall, Cornell

University in 1887. Scientific American cover

M. G. Bartolini Bussi et al.
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privilege. […] The instruction in the polytechnic

school has of necessity to adopt as fundamental

principles the three natural sciences—mechanics,

physics, and chemistry, and the all-measuring master

art of mathematics’’ (Reuleaux, 1876).

Franz Reuleaux incorporated mathematics into design

and invention of machines in his work Kinematics of

machinery. For mathematicians, he is best known for the

Reuleaux triangle, which is one of the curves of constant

width (see Fig. 4.) This curved triangle can be seen in some

gothic windows; it also appears in some drawings of

Leonardo da Vinci (1452–1519) and Leonhard Euler

(1707–1783), but Reuleaux in his Kinematics gave the first

applications and complete analysis of such triangles, and he

also noticed that similar constant-width curves could be

generated from any regular polygon with an odd number of

sides. (Taimina & Henderson, 2005).

Reuleaux classified his mechanisms using an alphabet,

that is, assigning letters to different groups of his mecha-

nisms. In that way, he stressed that each individual

mechanism was like a letter in an alphabet and, on com-

bining them together, we would get words and sentences,

which denote machines. His style of classification resem-

bles later classification ideas used in topology and theo-

retical computer science. The largest number (39) of

Reuleaux mechanisms is in the so-called S-series: straight

line mechanisms (see Fig. 3) (http://kmoddl.library.cornell.

edu/model.php?cat=S). Changing circular motion into

straight line motion had been a challenge to technology

since ancient times (Kempe, 1877). This problem was

crucial to James Watt (1736–1819) when he was working

on improving the steam engine (Taimina, 2005b; Hender-

son & Taimina, 2005b).

Klein defended the importance of models and instru-

ments to illustrate a theory, against the disposition of pure

mathematicians. In the same years, these ideas were shared

by the officers of ICMI. At the fifth International Congress

of Mathematicians in 1912, the section on didactics

received ICMI reports examining the state and trends of

mathematics teaching. In particular, the report of the Sub-

Commission A (mathematics in secondary education)

focused on ‘‘Intuition and experiment in mathematical

teaching in secondary schools’’ (Smith, 1913). Eugene

David Smith (1860–1944) discussed ‘‘contemporary

developments aimed at providing an ‘intuitive’, ‘percep-

tual’, ‘experiential’ and ‘experimental’ base for the subject

(p. 611), through ‘applying mathematics seriously to the

problems of life, and… visualizing the work’ (p. 615).

This, then, represented a foundational theme for the ICMI.

[…]. The main areas which the Sub-Commission singled

out […] were geometrical drawing, graphical methods,

practical measuring and numerical computation’’ (Ruthven,

2008). Further details may be found in Giacardi (2008).

2.2 Klein’s influence on mathematics education

in the USA: the Cornell collection

In 1857, the US Military Academy ordered 26 Olivier

models, of which the Department of Mathematical Sci-

ences still has 24 (Shell-Gellasch & Acheson, 2007). In this

way, the first common schools attempted to emulate the

‘‘objective’’ practices of their German counterparts. Sets of

geometric solids were sold to the new schools with claims

that they would help teachers present a common curricu-

lum. School boards and government commissions formal-

ized the arrangement, making models a required

component of mathematics instruction in many states.

Business was so good during the nineteenth century that

model makers were able to diversify into much more

lucrative catalogues of Mathematical Apparatus, which

included everything from the latest in ‘‘noiseless’’ drawing

slates and elegant ‘‘pointing rods’’ to hand-crafted

‘‘numerical frames,’’ made of the finest woods. There was

eventually a backlash, however, as teachers began to

complain that the expensive, and increasingly complicated,

apparatus was driving the curriculum. It is also of interest

to look at the response to the educational ‘‘technology’’ of

the time, i.e. concrete models in American colleges. The

use of concrete models in the classroom caused the same

kind of divisive debates that surround modern visualizationFig. 4 Reuleaux triangle rotating in the square (photo Prof. F. Moon)
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technology. Then, as in the present, usage varied from

place to place and from instructor to instructor. The most

enthusiastic endorsements in the report come from teachers

who used the models to help students visualize problems in

three-dimensional calculus and the ‘‘higher surfaces’’ of

descriptive geometry (Mueller, 2001).

Although Klein declined several opportunities to teach

in the USA, he nevertheless had a long-lasting influence on

American mathematics. The terrain was fertile, as Cornell

University in 1882 had acquired a collection of mechanical

models designed by Reuleux (see Fig. 2). The first Chair of

the Cornell Mathematics Department, James Edward Oli-

ver (1829–1895), went to study mathematical physics in

Cambridge; but, after hearing enthusiastic accounts of

Klein’s lectures, Oliver wrote to Klein from Cambridge to

ask whether it would be possible for him to spend some

time in Göttingen. One of the things in which he was

particularly interested was ‘‘to get pretty fully Klein’s ideas

as to methods of teaching, topics and courses of study, and

promising directions for original research by my young

men’’. Hence Cornell emerged as a prime sphere of Klein’s

influence in the USA (Parshall & Rowe 1991). Oliver sent

his student, Virgil Snyder (1869–1950), to study with Klein

in Göttingen. After the World’s Fair in Chicago (1893) and

the famous Evanston lectures, Klein travelled to the USA,

and one of the points of his interest was Cornell University,

where he was hosted by Oliver (Parshall & Rowe 1991).

As mentioned earlier, Cornell hosted the famous Rea-

uleaux collection, and hence the attitude towards experi-

mental approaches was very well established. We consider

later the pedagogical revival of this collection in the twenty

first century.

2.3 Klein’s influence on mathematics education

in Japan: mathematization in curricula

Japan was under the influence of Chinese mathematics until

the sixteenth century; the influence of European mathemat-

ics started in the middle of the nineteenth century from the

UK, France, Germany and USA (Isoda, 2004). To develop

new academy and school mathematics, some mathemati-

cians and mathematics educators studied mathematics in

Germany at the end of the nineteenth century and at the

beginning of the twentieth century. When they came back,

they became engaged in developing an integrated curriculum

as part of the Klein movement using the ideas such as in Perry

(1913) and Sanden (1914). This movement resulted in the

establishment in 1919 of the Japan Society of Mathematical

Education for the improvement of secondary school math-

ematics. Several textbooks based on this movement had been

published, such as those by Kuroda (1920), and several

contents had been experimentally taught at the secondary

school attached to the Tokyo higher normal school (origin of

the University of Tsukuba) with respect to calculus (see

Sanden 1914; Kuroda 1927) and projective geometry. Yet,

the integration into curricula was postponed because of the

earthquake, which had burned the capital Tokyo in 1923.

After the earthquake, the integration of the mathematics

curriculum was completed during WWII. It was done in the

curriculum reform of 1942 and published as textbooks in

1943 with the key word of mathematization (sugakuka in

Japanese). In the textbooks, a number of mechanical

instruments were treated as the subject matter for mathe-

matization. The textbooks’ style had a workbook format with

open-ended problems enabling students to learn by them-

selves with the support of their teachers during the air alerts

of the war. At first, the textbooks focused on the construction

of mental objects, which should be mathematized; later, it

became more sophisticated mathematically, repeatedly on a

spiral sequence: similar mathematical situations were

explored again and again for developing mental object in

mathematics.

Figure 5 represents an example of mathematization

related to the design of the cap of an electric lamp. In grade

6 (11-year-old students), students explore how to draw the

development of the section of cylinder experimentally by

using a set of different viewpoints such as front, side and

top views and by rotating the viewpoints on the radius of

the bottom part of the circle for their drawing. Here, stu-

dents study the methods for analysing solids by projection

onto planes. Later, the same situation is re-explored for

studying conic sections in grades 9 and 10. The same

mental object, which the situation explored, will be re-

explored in grade 11, with the recourse also to trigono-

metric functions.

Another example is taken from the 1943 textbooks

(approved by Monbusyo, 1943) for 14-year olds with the

aim of realizing mathematization with open-ended

approach from the situation to elementary geometry and

from elementary geometry to analytic geometry. There

Fig. 5 The first step of

designing the cap of an electric

lamp (Monbusyo, 1943)
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were designed shifts from everyday mechanisms (Fig. 6) to

the geometrically simple mathematical instruments

(Fig. 7), then to geometrically deduced mathematical

instruments (Fig. 8) and finally to algebraic representations

(all the figures are taken from Monbusyo, 1943). This

sequence beginning from Fig. 7 is the same as in the

textbook by Franz van Schooten (1615–1660), De organica

Conicarum Sectionum Constructione (1646), which first

treated conics plane geometrically and algebraically,

instead of as the section of a cone.

Mechanical instruments were well integrated in the

textbooks around World War II, but were gradually lost

after the war, and only the pantograph has remained after

the modernization of the 1960s–1970s curriculum because

of the introduction of more algebraic approaches such as

linear algebra.

2.4 Klein’s influence on mathematics education

in Italy: the collections in mathematical institutes

Italian mathematicians shared Klein’s interest in activities

with concrete models and dynamic instruments. Between

the nineteenth and twentieth centuries, many models and

instruments were available in nearly all the universities, at

the mathematical institutes, where the education of both

professional mathematicians and secondary mathematics

teachers took place an example is shown in the Fig. 9. Still,

in the early decades of the twentieth century, the impor-

tance of the reference to intuition (developed from the

consideration of models) was a feature of the so-called

Italian school of algebraic geometry. Guido Castelnuovo

(1865–1952) presented their work in this way:

‘‘We had created (in an abstract sense, of course) a

large number of models of surfaces in our space or in

higher spaces; and we had split these models, so to

speak, between two display windows. One contained

regular surfaces for which everything proceeded as it

would in the best of all possible worlds; analogy

allowed the most salient properties of plane curves to

Fig. 6 How does the point F move? (Monbusyo, 1943, vol. 3, p. 2)

Fig. 7 The locus of the point F (Monbusyo, 1943, vol. 3, p. 2)

Fig. 8 How does the point C move? (Monbusyo, 1943, vol. 3, p. 2)

Fig. 9 A plaster model of Steiner surface (courtesy of G. Ferrarese at

the Dipartimento di Matematica, Università di Torino)
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be transferred to these. When, however, we tried to

check these properties on the surfaces in the other dis-

play, that is on the irregular ones, our troubles began,

and exceptions of all kinds would crop up… With the

aforementioned procedure, which can be likened to the

type used in experimental sciences, we managed to

establish some distinctive characters between the two

surface families’’ (Castelnuovo, 1928) (http://www.

icmihistory.unito.it/portrait/castelnuovo.php).

Some decades later, Luigi Campedelli (1903–1978)

sharply commented that a reader could have read the above

vivid description of concrete models, ignoring the paren-

thesis ‘‘in an abstract sense, of course’’ (Campedelli, 1958).

In the following decades, under the influence of the

Bourbaki’s trend, the collections of models fell into

neglect, were warehoused and even destroyed. Recently,

the remains of some of the collections have been restored

and arranged in display cases as relics of the past. A

complete catalogue of the still existing collections of these

kinds of models and instruments has been prepared by

Palladino (n.d.), who visited all the departments of math-

ematics in Italy to check for their existence and present

condition. We shall consider later the use of these kinds of

instruments and models in today’s classrooms.

2.5 Different approaches

These three examples show different approaches to the

complex relationships between mathematics as a mental

activity and the exploration of the concrete materials of the

real world. To sum up, as a first approximation, one may

compare the real world on the one hand and the mathematical

world on the other hand. Klein, as evidenced by the above

quotation of Leibniz’ intentions, tends to consider concrete

models and dynamic instruments as representations of

mathematical concepts and processes. They can also be used

to solve problems in the real world, but this does not seem to

be the main issue. Rather concrete and dynamic exploration

of models and instruments (realized in the real world) may be

useful for teachers, at all school levels, to foster both math-

ematical understanding and the production of conjectures.

This is evident also in the above quotation from Castelnuovo

(1928) regarding collections in the mathematical institutes,

the purpose of which is to train both professional mathe-

maticians and mathematics teachers.

On the contrary, Reuleaux (1876) championed the impor-

tance of applied mathematics, with emphasis on the interac-

tion between mathematics, mechanics, physics and chemistry.

Japanese mathematicians and mathematics educators in

the early decades of the twentieth century have chosen an

integration between the two approaches, which are both

represented: the cultural approach, championed by Klein,

with reference to the history of mathematical ideas, and the

application approach (mathematization) with reference to

the mathematical modelling of concrete instruments. In

principle, they are not incompatible with each other; rather

they show the complexity of relationships between math-

ematics and the world of concrete experience. Gabriel

Koenigs (1858–1931) expressed well the complex links

between pure and applied mathematics, referring to a

pantograph for homotheties.

‘‘The theory of linkages is supposed to start in

1864. Surely linkages were used also earlier: a

dedicated and precise scholar might track down

them in the most ancient times. One might discover

in this way that each age has in hand, so to say,

yet without awareness, the discoveries of future

ages: the history of things often anticipates the

history of ideas. When in 1631 Scheiner published

for the first time the description of his pantograph,

he certainly did not know the general concepts

contained as germs in his small instrument; we

claim that he could not know them, as they are

linked to the theory of geometric transformations,

that is a theory typical of our century and gives a

unitary stamp to all the made advances’’ (Koenigs,

1897).

3 Second part

3.1 Use today in mathematics classrooms

In the first part of this study, we have reported some his-

torical information about one of the richest periods in the

recent history of mathematics education, as far as the

relationships between pure and applied mathematics are

concerned, in three different continents (Europe, America

and Asia). This reconstruction meets the needs of a his-

torical issue about resources and technologies in the

International Commission on Mathematical Instruction.

Yet, it would be misleading to avoid reporting about the

present use of concrete models and dynamic instruments

described above in the same countries, where specific

research centres have been continued or created anew.

Actually, the historical traditions dating back to Klein and

other scholars have been resumed in three different places,

where the three authors of this paper developed important

programs in mathematics education involving teachers and

classrooms.
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3.2 Use today in mathematics classrooms: KMODDL

pedagogical space at Cornell University (USA)

Taking advantage of the Reuleaux collection, in 2002, the

Cornell University started to develop KMODLL (kinematic

models for design digital library). Now these models can be

explored on the Web site http://kmoddl.library.cornell.edu/

or http://kmoddl.org. On the Web sites, besides having still

images of models, there are historical information and

interactive movies that allow a viewer to explore how these

models work. The Web site also has scanned rare books

that are important in the history of technology. A signifi-

cant part of this project works in connecting concrete

models and dynamic instruments, on the one hand, and

mathematical ideas behind these, on the other hand, for the

purpose of using them in the classroom. Teaching materials

have been developed and can be found in the section of the

Web site called Tutorials. There are also stereo litho-

graphic files that allow 3D printing of some of the models.

This material is available for teachers who wish to intro-

duce these activities in their classroom.

Cornell Faculty in Mechanical Engineering, Mathemat-

ics and Architecture are using the KMODDL Web site in

the classroom to teach mathematical principles of mecha-

nisms as well as machine design and drawing. Mathemat-

ical ideas from this collection have found their place in the

geometry textbook (Henderson & Taimina, 2005a).

The initial evaluation of the KMODDL in an under-

graduate mathematics class has confirmed the usefulness of

various physical and digital models in facilitating learning,

and revealed interesting relationships among usability,

learning and subjective experiences of the students (Pan

et al. 2004).

Reuleaux models have been also the object of a 9-week

interdisciplinary project ‘Exploring Machine Motion

Design’ in area schools for grades 7–9, carried out several

times in the last few years. The choice of exploring kine-

matic models was determined by the possibility to take

actual Reuleaux models into the schools. During this pro-

ject, students learned about the history of engineering and

the role of mathematicians in it. One of human’s oldest

mechanical devices is gears. The earliest written records on

gearing are dated from about 330 BC in the writings of

Aristotle. He explained gear wheel drives in windlasses,

pointing out that the direction of rotation is reversed when

one gear wheel drives another. The most probable uses

were in clocks, temple devices and water lifting equipment.

The Romans and Greeks made wide use of gearing in

clocks and astronomical devices. Gears were also used to

measure distance or speed. One of the most interesting

relics of antiquity is the Antikythera machine, which is an

astronomical computer. Mathematical studies of gears were

begun by Nicholas of Cusa (1401–1464) who, around

1450, studied cycloids. The famous painter Albrecht Dürer

(1471–1528) also was interested in cycloids and he dis-

covered epicycloids. The students in the project recalled

that some of them played in their childhood with a toy

called ‘Spirograph’; such toys are still available in some art

museum stores. Students were surprised to learn that one of

the most important problems in the development of early

technology was seemingly based on a simple question: how

to draw a straight line (see Taimina, 2005b). This led the

class discussion to some geometry of inversions and con-

struction of linkages. Discussion on linkages was continued

during a field trip to the Cornell Robotics Laboratory,

where a group of researchers were working on designing

evolutionary robots and testing these devices by asking the

robots to re-create linkages in the kinematic model col-

lection (see Taimina, 2005a). Exploring the history and

mathematics of the universal joint helped students to see

connections with spherical geometry that is a neglected

topic in school curricula. At the end of this project, students

were asked to create their own machine motion design,

using as parts of their design models in the digital kine-

matic mechanism collection.

The 9-week interdisciplinary project could not cover all

the riches of the kinematic model collection, so students

submitted questions they had on the history of mechanisms

and particularly on its connections with geometry. The goal

of the project was to give students an opportunity to learn

about basic elements of mechanisms, so that they could

apply their knowledge to design their own machines. When

this project was taught for the second time, students were

able to use interactive computer design that involved ele-

ments from the historic kinematic model collection as

building blocks for their own geometrical motion design.

3.3 Use today in mathematics classroom: CRICED

at Tsukuba University (Japan)

As stated above, in Japan, the capacity of using mechanical

instruments in the standard classroom has strongly

diminished in the last decades. The use of mechanical

instruments was rediscovered in 1990s to implement

explorations within dynamic geometry software (DGS)

inspired by the history of mathematics (for an example, see

the following section). A project on mechanical materials

such as LEGO (Isoda et al. 2001; Isoda & Matsuzaki,

2003) was established in 1996. Within this project, online

teaching materials were developed (Isoda, 2008) in con-

nection with Bartolini Bussi (1998), drawing on a number

of historical textbooks. This project has influenced the

revision of Japanese textbooks.

Isoda et al. (2006) developed the free software ‘dbook’

in xml format to produce e-textbooks including mathe-

matical tools in classroom used together with an interactive
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board (Isoda, 2008). It enables us to use DGS and digital

traditional instruments, such as a compass, on an e-text-

book through Web sites while still keeping the traditional

chalkboard classroom teaching approach (Fig. 10).

Figure 10 shows an e-textbook, which was developed

from the textbook by van Schooten (1646). As shown by

Isoda (2008), dbook was used for graduate students of the

Federal University of Rio de Janeiro to find the intuition

emerging in the activity with the textbooks. For example,

the instrument in Fig. 10 (Fig. 7) is mechanically and

mathematically the same as in Fig. 8, if we have geomet-

rical intuitions. The participants understood well the exis-

tence of this intuition, which van Schooten had. But,

without specific activity, students lost it when algebra got

the upper hand over geometric intuition.

3.4 Use today in mathematics classroom:

the Laboratory of Mathematical Machines

in Modena (Italy)

In Italy, the importance of teaching the use of concrete

models and dynamic instruments was defended by charis-

matic teachers such as Emma Castelnuovo (2008). Within

this tradition, in the University of Modena and Reggio

Emilia, a rich collection of more than 200 concrete models

and dynamic instruments was constructed in a carpentry

workshop, taking a leaf out of the phenomenology of

geometry from the classical age to the nineteenth cen-

tury. The collection is now stored in the Laboratory of

Mathematical Machines (http://www.mmlab.unimore.it). It

is always increasing, as new models and instruments are

built every year. Briefly, a mathematical machine (con-

cerning geometry) is a tool that forces a point to follow a

trajectory or to be transformed according to a given law.

Familiar examples of mathematical machines are the

standard compass (that forces a point to go on a circular

trajectory), the instruments described by Klein (1924,

1925) and reported above, the dynamic instruments of the

Cornell collection and van Schooten’s drawing devices

used in the CRICED project.

The implementation of hands-on activities on mathe-

matical machines, aiming at producing conjectures and

constructing proofs about their functioning and mathe-

matical properties, has been reported elsewhere (e.g.

Bartolini Bussi & Pergola, 1996; Bartolini Bussi, 1998;

Maschietto, 2005). There is also space for modelling

activity, when dynamic geometry software is introduced

(Bartolini Bussi, 2001).

Consider, for instance, the device for drawing a parabola

by Bonaventura Cavalieri (1598–1647). In Chapter XLVI

of Lo specchio ustorio (the burning mirror, Cavalieri,

1632), Cavalieri described a method for tracing a parabola

by means of hard instruments, made up of rulers and set

squares. In the following figures, the original drawing by

Cavalieri (Fig. 11) is paired with a wooden copy of it

(Fig. 12), shown in the same orientation to foster the

identification of the same components. The tracing point is

I (where a pencil lead R is put). The point A is fixed. The

Fig. 10 The e-textbook

developed from van Schooten

(1646) by using dbook
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bar KL has a fixed length (evident in the wooden copy) and

slides in the rail, dragging the set squares KLN and KIA,

aAnd the ruler AI slides on the point A. During the motion,

R (in I) traces an arch of parabola. In Cavalieri’s drawing

also the symmetric arch is drawn, in spite of the practical

impossibility of drawing it, without modifying the set

squares.

The wooden copy has been built in the Laboratory of

Mathematical Machine drawing on Cavalieri’s design. This

copy is usually given to students (undergraduate prospec-

tive teachers), asking them to produce a digital model by

means of Cabri software. Actually, by means of dynamic

geometry software such as Cabri, it is possible to produce a

construction that may be moved like the original to produce

a parabolic arch. This is a true modelling task, where a

concrete object is analysed to build its mathematical

model, not described by equations but by analogical

reproduction.

The process may be reported as follows:

First part: in the world of the dynamic instrument

(a) to look at the instrument; to catch the possibility of

motion;

(b) to identify the fixed elements (the rail; the point A;

the right angles KIA and KLN; the length KL), using,

if necessary, measuring instruments;

(c) to understand that some elements are not essential in

this kind of modelling (e.g. the rulers’ thickness; the

cracks in the bars; the screws).

Second part: in the geometrical world (Cabri Geometry)

(a) to draw (in the Cabri screen) the rail and the fixed

points; to choose a fixed line segment to model the bar

KL; to identify a point to be used to direct the motion

(it may be either a free point, if any, or a point bound

to the rail);

(b) to draw the digital copy of the instrument around the

chosen elements; this has to be done following the

software logic on the one hand, and the geometrical

properties of elements, on the other hand. So, for

instance, when one knows point A and point K, to find

point I, one needs to construct a right angle, which

can be done using the features of semicircles…

Third part: back in the world of the dynamic instrument.

(a) to interpret the digital copy of the instrument; to drag

it;

(b) to verify whether the fixed rulers maintain fixed

length; to check whether the arch is drawn (see

Fig. 13);

(c) to check whether the digital copy of the instrument

works in the same way as the concrete one; to analyse

limits (e.g. is the same arch traced?) and potentialities

(may the fixed line segment KL, a ‘parameter’ of the

construction, be changed?) What happens if this

parameter is changed?

Changing the length of some line segments in the digital

model has different consequences:

Fig. 11 The original drawing

Fig. 12 A wooden copy

A

L

K

I

A

L

K

I

Fig. 13 Two different frames of the same digital instrument
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• changing the line segments containing AI and IK

changes the length of the arc on the same parabola;

• changing the length of the line segment KL changes the

width of the parabola.

A practical application of the modelling process is

realized when it is necessary to build a new concrete

model: the measure of the wooden board and of the bars

may be designed carefully before cutting them, to obtain a

well proportioned arc.

4 Concluding remarks

The three examples show clearly how an old tradition,

rooted on Klein’s views, may be resumed today. In all

cases, the reference to the history of mathematics is explicit

and brought to the students’ knowledge, concrete models

and dynamic instruments are available for students’ real

manipulation and complementarities between cultural

aspects and modelling are pursued.

Last, but not least, information and communication

technologies are introduced, although in different forms

and with different aims:

• In the Cornell project, professional movies show the

actual functioning of the precious historical instruments

and stereo lithographic files allow 3-D printing of some

of the models; moreover, other interactive simulations

allow Web exploration of dynamic instruments;

• In the CRICED project, historical books are weaved

together with interactive dynamic simulations;

• In the mathematical machines project, dynamic simu-

lations are not only available on the Web, but also are

objects of specific teaching and learning activities with

prospective mathematics teachers offering a non-trivial

context for mathematical modelling.

There is no claim that concrete models and dynamic

instruments may be replaced by their digital copies with no

loss. Trivially, the digitalization of instruments allows

them to become widely available: where there is an access

to the Internet one can play with these models interactively.

Yet a deep analysis of the changes (if any) in both didac-

tical and cognitive processes when a concrete object is

replaced by a digital copy is yet to be performed.

As mentioned earlier, mathematical modelling is not the

only element, but an important element of all three research

programmes. In this study, we have shown that modelling

and application can be paired within an approach that does

not neglect, but rather emphasize, the cultural aspects

of mathematics, going back to the prominent founders

of modern mathematics and taking advantage of the

increasingly wider diffusion of information and commu-

nication technologies.
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