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Exploiting low-rank structures for the solution of partial differential equations (PDEs) has
emerged as a powerful technique in the field of numerical simulation and scientific computing.
Many real-world systems exhibit inherent low-dimensional patterns among solution variables,
allowing for more efficient computation. Techniques like reduced-order modeling, tensor decom-
position, matrix factorizations and certain machine learning methods help uncover and exploit
these structures, enabling faster simulations and reduced memory usage. This approach not
only accelerates the analysis of physical phenomena but also finds applications in fields such as
optimal control, uncertainty quantification and computational design. By efficiently approximat-
ing complex PDE solutions with fewer degrees of freedom, low-rank methods facilitate scalable
algorithms and offer enhanced interpretability, making them invaluable tools for tackling high-
dimensional problems in various scientific and engineering domains.
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11:30—-12:00 Low-rank Matrix Solvers for Evolutionary PDEs
Davide Palitta (Universita di Bologna, Italy)
Abstract. We consider time-dependent partial differential equations (PDEs) of the form

w = L(u)+ f, inQx (0,7,
(1) u = g, on 0f),
u(z,0) = wup(x),

where Q € R%, d = 1,2, 3, and £ is a linear differential operator involving only spatial derivatives.

Many efficient and diverse numerical methods have been developed in the literature for the
solution of (1). Roughly speaking, these can be divided into two main categories: time-marching
schemes and all-at-once methods.

In the former class, we first semi-discretized (1), namely we discretize only the space component
of the differential problem by applying our favorite scheme. Then, a time integrator is applied
to deal with the time component of the problem. The latter step leads to a sequence of linear
systems, one at each time step, of the form

(2) Au; = fi, A; GRﬁXﬁ, i=1,...,4,

where 7 is the number of spatial degrees of freedom and /¢ is the number of time steps.

All-at-once methods significantly differ from time-marching schemes. Indeed, in place of a two-
step strategy where we first discretize in space and then in time, the space and time components
of (1) are discretized at once whenever an all-at-once approach is adopted. This different point
of view in the discretization phase impacts the linear algebra step as well. In particular, rather
than the sequence of linear systems in (2), we need to solve a single, yet much larger, linear
system of the form

(3) Au = f,

where A € R?> w=[uf,... wl17 f=[f],..., fF1T € R™. The dimensions of .A may make
look the all-at-once formulation (3) computationally prohibitive. Nevertheless, the coefficient
matrix A is often extremely structured. This feature, along with other characteristics of the
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problem at hand, can be fully exploited to design a very efficient numerical linear algebra phase
to the point that the all-at-once scheme oftentimes outperforms the time-marching approach (2).

We leverage this structure to reformulate (3) in terms of a single Sylvester matrix equation of
the form

(4) KU+ MUB =F,

where K, M € R™™ are the spatial stiffness and mass matrices, respectively, B € R is the
discrete time operator stemming from the adopted time integrator, and U = [uq,...,ug],F =
[f1,---, f] € R™‘ The matrix equation formulation (4) of the discrete problem naturally
encodes the separability of the spatial and time derivatives of the underlying differential operator
and the tensorized nature of the cylinder © x (0,77 in (1). We show that this lets us employ
different strategies to deal with the spatial and time components of the algebraic problem and
combine them in a very efficient solution procedure. In particular, state-of-the-art projection
techniques are proposed to tackle the spatial operator while the circulant-plus-low-rank structure
of the time discrete operator is exploited to derive effective solution schemes [1]. The resulting
algorithm is able to efficiently solve problems with a tremendous number of degrees of freedom
while maintaining a low storage demand as we will illustrate in several numerical results.
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12:00-12:30 Matrix-oriented discretizations for evolutionary PDEs and applications
Ivonne Sgura (Universita del Salento, Italy)

Abstract. Among evolutionary PDEs we focus on reaction-diffusion systems where the so-called
Turing instability can give rise to a rich scenario of spatial patterns attained as stationary so-
lutions. To capture the morphological features of Turing patterns is a challenging task because
both very fine space discretization and longtime integration are needed. We show that, after
semi-discretization in space, the Kronecker structure of the diffusion matrix can be exploited to
build matrix-oriented (MO) versions of some classical time integrators. In particular, we con-
sider finite differences on square domains and classical Lagrangian FEM on more general domains
and special surfaces. In the first case, the fully discrete problem is reformulated as a sequence
of Sylvester matriz equations, that we solve by the reduced approach in the associated spectral
space [1]. In the second case, at each time step we solve a multiterm Sylvester matriz equation
by the matrix form of the Preconditioned Conjugate Gradient (MO-PCG) [2].

As an application, we consider Turing pattern approximation in the DIB morphochemical PDE
system for battery modeling [3] and we present encouraging results wrt the classical vector ap-
proach (solving large sparse linear systems) in terms of execution times and memory storage.
Moreover, we show that the MO approach based on the reduced method can be extended to high
order diffusion PDEs like the Cahn-Hilliard equation (4th order) among phase-field models.
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12:30—-13:00 Low rank methods for Turing pattern approximation in reaction-diffusion
PDE systems
Alessandro Alla (Universita Ca’ Foscari Venezia, Italy)

Abstract. In this talk we will discuss two low rank methods for the numerical approximation of
Turing patterns, that are stationary solutions of reaction-diffusion PDE (RD-PDE) systems by
means of Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD).
Both techniques present inaccurate approximations, therefore we will introduce two novel algo-
rithms that aim at stabilizing the studied problem. In the first part of the talk we focus on the
stabilization of the POD-DEIM technique. We show that solutions of surrogate models built
by classical POD-DEIM exhibit an unstable error behaviour over the dimension of the reduced
space. To overcome this drawback, we add a correction term that provides missing information
to the reduced model and we apply the POD-DEIM technique to the corrected model. To further
improve the computational efficiency, we propose an adaptive version of this algorithm in time
that accounts for the peculiar dynamics of the RD-PDE in presence of Turing instability.

In the second part we show that DMD does not provide accurate approximation for datasets
describing oscillatory dynamics, like spiral waves, relaxation oscillations and spatio-temporal
Turing instability. Inspired by the classical “divide and conquer” approach, we propose a piece-
wise version of DMD (pDMD) to overcome this problem. The main idea is to split the original
dataset in N submatrices and then apply the exact (randomized) DMD method in each subset
of the obtained partition. We describe the pDMD algorithm in detail and we introduce some
error indicators to evaluate its performance when N is increased.

Throughout the talk, we will show the effectiveness of the proposed methods in terms of
accuracy and computational cost for a selection of RD systems.
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in reaction-diffusion PDE systems, Journal of Numerical Mathematics, 2023, 31, 205-229.

[2] A. Alla, A. Monti, I. Sgura, Piecewise DMD for oscillatory and Turing spatio-temporal dy-
namics, Computers and Mathematics with Applications, 2024, 160, 108-124

14:30—-15:00 Polynomial Approximation for Nonlinear Model Reduction by Moment
Matching
Carlos Doebeli (Imperial College London, UK)

Abstract. Many physical applications involve modeling the state of a complex system as a high
dimensional system of ODEs with algebraic constraints. The high dimensionality of these models
introduces significant computational challenges in trying to analyse the behaviour of the system,
which is often known as the “curse of dimensionality”. One way to alleviate the computational
complexity of such problems is by using reduced order modeling to create a simpler system that
preserves important characteristics.

This talk focuses on nonlinear model reduction using the technique of moment matching
for nonlinear dynamical systems whose input is generated by a signal generator system. Un-
der certain assumptions, there exists an invariant manifold associated with the solution of a
“Sylvester-like” PDE which can then be related to the steady-state response of the system. This
talk introduces a procedure to numerically approximate the solutions to the invariance equa-
tions that arise in moment matching. The Galerkin residual method is employed to find an
approximate solution to the invariance equation using a Newton iteration on the coefficients
of a monomial basis expansion of the solution. These approximate solutions to the invariance
equation can then be used to construct reduced order models.
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15:00—-15:30 Residual Data-Driven Variational Multiscale Reduced Order Models for
Convection-Dominated Flows
Birgul Koc (University of Seville, Spain)

Abstract. We investigate the modeling of sub-scale components of proper orthogonal decompo-
sition reduced order models (POD-ROMs) of convection-dominated flows. We propose ROM
closure models that depend on the ROM residual. We illustrate the new residual-based data-
driven ROM closure within the variational multi-scale (VMS) framework and investigate it in
the numerical simulation of a one-dimensional parameter-dependent convection-dominated prob-
lem and two-dimensional time-dependent advection-diffusion-reaction problem and flow past a
cylinder. Our numerical investigation shows that the new residual-based data-driven VMS-ROM

is more accurate than both the coefficient-based data-driven ROMs and the standard Galerkin
ROM.
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15:30-16:00 Structure-Preserving Learning of High-Dimensional Lagrangian Sys-
tems
Boris Kramer (University of California San Diego, USA)

Abstract. Lagrangian mechanics is a foundational modeling approach in diverse areas such as
structural mechanics, aerospace engineering, wave propagation, and soft robotics. The state
equations of these systems are derived from by applying the Euler-Lagrange equations to the
Lagrangian energy function, which is specified by the difference of kinetic and potential energy.
This results in a highly structured state space and model equations, which are, however, too
high-dimensional for fast simulation and control. This talk gives an overview of a few recently
developed approaches for learning structure-preserving reduced-order models.

First, we discuss Lagrangian Operator Inference (LOPINF), a data-driven reduced-order model
learning framework that respects the Lagrangian structure and learns the associated linear oper-
ators for the kinetic and potential energies. We demonstrate the wide applicability and effective-
ness of the approach an Euler-Bernoulli beam model from structural mechanics, the sine-Gordon
(nonlinear) wave equation, and two large-scale discretization of a soft robot fishtail with 251,000
and 779,232 degrees of freedom, respectively. With much fewer training data than non-structured
learning methods require, the Lagrangian learned reduced models provides stability and robust-
ness, and have long-term predictive accuracy.

Second, we present an extension of LOPINF that adds structure-preserving machine learning
to learn the nonlinear terms in the Lagrangian models. Through a two-step approach, we first
learn the best-fit linear Lagrangian ROM via LOPINF and then use a structure-preserving ma-
chine learning method to learn nonlinearities in the reduced space. The proposed approach can
learn a structure-preserving nonlinear ROM purely from data, unlike the previously introduced
Lagrangian Operator Inference approach that required knowledge about the mathematical form
of nonlinear terms (if used on nonlinear models). From a machine learning perspective, it acceler-
ates the training of the structure-preserving neural network by providing an informed prior (i.e.,
the linear Lagrangian ROM structure), and it reduces the computational cost of the network
training by operating on the reduced space. The method is first demonstrated on two simulated
examples: a conservative nonlinear rod model and a two-dimensional nonlinear membrane with
nonlinear internal damping. Finally, the method is demonstrated on an experimental dataset
consisting of digital image correlation measurements taken from a lap-joint beam structure from
which a predictive model is learned that captures amplitude-dependent frequency and damping
characteristics accurately. The numerical results demonstrate that the proposed approach yields
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generalizable nonlinear ROMs that exhibit bounded energy error, capture the nonlinear charac-
teristics reliably, and provide accurate long-time predictions outside the training data regime.

We highlight that the proposed approaches exploit knowledge of the structure of the governing
equations (but not their discretization) to define the form and parametrization of a Lagrangian
ROM which can then be learned from projected snapshot data. The method does not require
access to FOM operators or computer code.
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16:00-16:30 Flexible domain decomposition-based couplings of conventional and
data-driven models via the Schwarz alternating method
Irina Tezaur (Sandia National Laboratories, Livermore, CA, USA.)

Abstract. This talk will describe some recent advancements in developing a rigorous mathe-
matical framework for the domain decomposition-based coupling of arbitrary combinations of
first-principles numerical methods (i.e., full order models or FOMs) with data-driven models
(i.e., projection-based reduced order models or ROMs) under the flexible Heterogeneous Nu-
merical Methods (fHNM) project at Sandia National Laboratories. Specifically, I will present
a recent extension of the Schwarz alternating method |[1,2] that enables the creation of FOM-
ROM and ROM-ROM couplings from nonlinear monolithic problems [3]. This method works
by performing an overlapping or non-overlapping domain decomposition (DD) of the physical
domain, and solving a sequence of problems on these subdomains, with information propagating
through carefully-constructed transmission conditions on the subdomain boundaries. The solu-
tion in each subdomain may be characterized by much simpler, localized dynamics, and hence
more easily modeled and solved. We will showcase recent results obtained by implementing this
method in the open-source Pressio demo-apps library, which demonstrate that the Schwarz al-
ternating method is capable of delivering stable and accurate hybrid models when applied to
advection-dominated fluid flow problems with moving shocks, for which monolithic approaches
are prohibitively expensive or grossly inaccurate. We will additionally demonstrate that online
CPU-time gains are achievable through an implementation of the additive variant of the Schwarz
alternating method, which admits more parallelism by solving all subdomain-local problems si-
multaneously on different processes/threads. Time-permitting, we will describe some ongoing
work aimed at developing an automated learning algorithm leveraged to select “optimal” (i.e,
accuracy and efficiency maximizing) DDs and ROM vs. FOM placements/assignments.
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17:00-17:30 Dynamical Low-Rank Approximations for parametric infinite horizon
optimal control problems

Maria Strazzullo (Politecnico di Torino, Italy)
Abstract. Optimal control is a strategy to enhance the performance of complex dynamical sys-
tems by minimizing a predefined cost functional, with the overarching goal of steering the system
dynamics towards a desired stable configuration. However, its applicability is still limited due to
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high-dimensional state spaces, especially in parametric settings. To address these challenges, we
exploit the Dynamical Low-Rank Approximation (DLRA) methodology for the efficient and pre-
cise resolution of high-dimensional feedback control problems, relying on State Dependent Riccati
Equations (SDREs) for infinite horizon optimal control. DLRA not only furnishes a compact,
low-dimensional representation of the system dynamics but also dynamically evolves alongside
the problem, ensuring increased accuracy and enabling effective real-time control settings. In
this work, we propose two novel algorithms for tackling feedback control problems:

o Monolithic DLRA (mDLRA-SDREs) for SDRE control, where the SDRE is solved for all
parametric instances simultaneously.

o Cascade DLRA (cDLRA-SDRESs) for SDRE control, where each SDRE Riccati solution
is obtained by leveraging the solution of the previous parameter, enhancing convergence
and resulting in a faster evolution of the controlled low-rank system.

We validate the robustness and effectiveness of the algorithms through nonlinear test cases, such
as optimal control problems governed by Burgers’ equation and the Allen—-Cahn equation. More-
over, we compare the DLRA-based control strategies with standard global Proper Orthogonal
Decomposition model order reduction, showing advantages in terms of speed-up and accuracy
with respect to the ground truth solution.

17:30—-18:00 Optimal bounds for POD approximations of infinite horizon control
problems based on time derivatives
Julia Novo (University Auténoma of Madrid, Spain)

Abstract. In this talk we consider the numerical approximation of infinite horizon problems via
the dynamic programming approach. The value function of the problem solves a Hamilton-
Jacobi-Bellman (HJB) equation that is approximated by a fully discrete method. It is known
that the numerical problem is difficult to handle by the so called curse of dimensionality. To
mitigate this issue we apply a reduction of the order by means of a new proper orthogonal
decomposition (POD) method based on time derivatives. We carry out the error analysis of the
method using recently proved optimal bounds for the fully discrete approximations. Moreover,
the use of snapshots based on time derivatives allow us to bound some terms of the error that
could not be bounded in a standard POD approach. Some numerical experiments show the good
performance of the method in practice.

18:00—-18:30 Using Empirical Tensor Train Approximation for Solving High-Dimensional
Optimal Control Problems

Mathias Oster (RWTH Achen, Germany)
Abstract. We display two approaches to solve finite horizon optimal control problems. First we
solve the Bellman equation numerically by employing the Policy Iteration algorithm. Second,
we introduce use open loop methods to learn the value function. To overcome computational
infeasability we use tensor trains and multi-polynomials, together with high-dimensional quad-
rature, e.g. Monte-Carlo. Furthermore, we compare the tensor methods to neural networks
and kernel approaches. By controlling a destabilized version of viscous Burgers and a diffusion
equation with unstable reaction term numerical evidence is given.
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